天天小知识
5大改变未来的超难科学挑战是什么?(4)
4.捕捉引力波
斯科特·雷森(Scott Ransom)那孩子似的劲头与他正在从事的研究似乎有些不相符:这个研究可能要等上十来年才能初见端倪。雷森是美国国家射电天文台(National Radio Astronomy Observatory)的天文学家,在谈到星系中最精准的天然钟表——脉冲星(pulstar)时,他嘴里蹦出了一连串的“太棒了”、“酷毙了”这样的词来,并认为脉冲星能让他和其他科学家验证爱因斯坦广义相对论中一个最基本的预言——引力波(gravitational wave)。“它将为我们打开一扇观测宇宙的全新窗口,”他嚷嚷着,“除了‘光之眼’,我们还有‘质量之眼’。”
雷森解释说,按照爱因斯坦广义相对论,引力波是由质量运动引起的时空结构的涟漪,比如说一对互相绕转的中子星(neutron star)就能产生引力波。雷森说,这就像抖动一个电子,会让电子周围的电场和磁场以光及其他形式的辐射向周围传播一样,“当你抖动某个有质量的物体,你就制造出了引力波”。
不过令人沮丧的是,就算一系列非常强的引力波扫过地球,也只会让地球直径收缩或扩张不到10纳米,因此诸如美国激光干涉引力波天文台(Laser Interferometer Gravitational wave Observatory,LIGO)这类建在地面上的引力波探测设备,永远无法摆脱背景噪声的干扰,路过的卡车、雷暴甚至千里之外的海滩上起伏的海浪,都会淹没引力波信号。
因此,雷森和他的狂热追随者决定独辟蹊径,采取一种成本更低方式来探测引力波:观测脉冲星。脉冲星是密度极大的天体,有些脉冲星每秒能自转数千次,每次转动都向外辐射出一道脉冲闪光——天文学家对脉冲发出时间的测量能精确到100纳秒之内。由于甚低频(very-low-frequency)引力波会扰动脉冲星和地球之间的时空,导致脉冲时间发生偏移,因此雷森小组打算,监测分布在全天的20个脉冲星,看能否探测到这种时间偏移。他们希望,通过这种方式,能探测到宇宙深处大质量黑洞数年一周的转动、星系相互碰撞等最强引力波源所产生的引力波。
这项研究是由国际脉冲星记时阵列协会(International Pulsar Timing Array consortium)组织的,除了雷森外,还有10多位科学家参与。好消息是,他们无须购买任何新设备,波多黎各的阿雷西博射电望远镜(Arecibo radio telescope)就可担此任。但坏消息是,大概要持续观测十年,才能捕捉到由转动黑洞发出的引力波,目前他们只对6颗脉冲星进行了连续5年的准确计时测量。
不过,雷森仍旧充满信心:“我们成功的机会与日俱增,只要耐心等待,引力波终将会出现。”